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ABSTRACT 

The research considers the properties of a number of statistical measures of 

volatility, extending from the common standard deviation metric to less widely 

used range-based measures.  Prior research in this field, which has typically 

featured the use of data series generated by Monte Carlo simulation within the 

theoretical framework of Geometric Brownian Motion, has tended towards the 

conclusion that alternate volatility estimators offer substantial efficiency 

improvements relative to the standard deviation estimator.   This research 

indicates, however, that such findings are critically dependent on the assumptions 

made with regard to the nature of the underlying process of interest.  The 

research considers the effect that departures from the behavior of the idealized 

Geometric Brownian Motion process may have on the performance of a variety 

of volatility estimators.  More specifically, we evaluate the impact that sample size 

and frequency, process drift, opening gaps and time-varying volatility may have 

on the performance of both the standard deviation metric and its various 

alternatives.  Under each of the scenarios considered, the integrated volatility 

estimator represents the “gold standard” in terms of bias and efficiency.   All 

other estimators, with the possible exception of the Alizadeh-Brandt-Diebold 

estimator, produce biased estimates of the true process volatility unless 
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observations are taken at very high frequencies.  The performance of these 

estimators further deteriorates in the presence of other departures from 

geometric Brownian motion such as process drift, stochastic volatility and 

opening gaps.  As bid-offer spreads are almost certain to introduce a further 

source of substantial bias at high frequencies, these findings call into question the 

usefulness of many of the alternate estimators despite their superior efficiency.  

However, when the research moves on to consider empirical data derived from 

the S&P 500 Index process, the Alizadeh-Brandt-Diebold estimator is amongst 

the worst performers, while the range-based Parkinson estimator comes out 

ahead.  None of the estimators achieves anything close to the levels of efficiency 

expected from theory or seen in simulation studies.  One common factor, 

however, is that the standard deviation estimator is generally the worst 

performing metric on every criteria, for both simulated and empirical data series. 
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Introduction 

Volatility estimation is of central importance to risk management, pricing and 

portfolio construction and a number of attempts have been made in the last 25 

years to improve upon the classical standard deviation of daily returns as an 

estimator of asset volatility.  Many of these estimators, such as those developed 

by Parkinson [1980], Garman and Klass [1980], Rogers and Satchell [1991], 

Alizahdeh, Brandt and Diebold [2001] and Yang and Zhang [2002] use 

information on daily trading ranges – the intraday high and low prices in the 

asset.  Compared to the classical close to close estimator, these estimators have a 

theoretical efficiency that is 5 times greater in the case of the Parkinson estimator, 

while in the case of the Garman and Klass and Yang and Zang estimators the 

efficiency is typically as much as 7 or 8 times, depending on the estimation period 

and the assumed characteristics of the underlying asset process.  However, some 

of the assumptions do not realistically apply to asset processes: for instance, it is 

typically assumed that the asset process is continuous and follows a geometric 

Brownian motion, that volatility is constant, and that the drift in the underlying 

process is zero.  Empirical evidence suggests that none of these assumptions is 

tenable when applied to asset processes and the question at issue is to what extent 

the theoretical advantages of the alternate estimators endure in the real world 

application of estimating asset volatility. 
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As the true volatility of an asset process if unobservable, prior studies have 

tended to focus on comparison of the performance of various estimators for a 

process generated by Monte Carlo simulation.  While these have tended to 

support the claimed efficiency improvements of the various estimators, in most 

cases they have ignored inconvenient departures from GBM behavior such as 

non-zero drift, non-constant variance and discontinuities in the underlying 

process.  By contrast, Rogers, Satchell and Yoon [1994] do consider this issue and 

show that the Rogers and Satchell estimator significantly outperforms other 

estimators when the asset process includes a time-varying drift.  The more recent 

Yang and Zhang estimator is likewise theoretically better equipped to cope with 

underlying processes that have non-zero drift and in this study we compare the 

performance of this and other estimators for a simulated GBM process 

incorporating non-zero drift of varying levels. 

Another problem encountered in estimating volatility for asset processes is the 

existence of opening price jumps.  Rather than being continuous, most asset 

markets are closed overnight and for certain holidays.  Information arriving 

during periods when the market is closed often results in opening prices that 

differ significantly from the closing price of the prior trading session.  Price gaps 

of this kind are particularly evident in markets that are affected by trading in 

other, non-contemporaneous, markets (for instance, the opening of a trading 

session in European markets often reflects activity in related US markets in its 
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prior trading session), or in markets in which non-trading related news frequently 

arrives when the market is closed (for instance, in agricultural commodity 

markets, where news is often weather-related).   Hence it is important to test the 

effect of opening price gaps on the performance of the various volatility 

estimators.  Finally, it is important to consider how estimators perform for 

processes in which volatility is not constant.  The expectation here is that some of 

the more efficient estimators that incorporate price range information are likely to 

perform better as they require fewer data points to arrive at volatility estimates 

and hence will be influenced to a lesser degree by observations from earlier 

periods in which a different volatility regime may have pertained.  

While for a simulated process with known drift and volatility the procedure for 

assessing estimator performance is straightforward, the same is not true for real 

market processes where both drift and volatility are unobservable.  Here we take 

the approach developed by Anderson and Bollerslev [1997], using high frequency 

data at five minute intervals to arrive at daily volatility estimates. 

Data and Methodology 

Volatility Estimation 

A geometric Brownian motion process for an asset with price St evolves as 

follows: 

tttt dZSdtSdS σµ +=
 [1.1] 
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Where µ is the asset drift, σ is the volatility (assumed constant) and Zt is a Weiner 

process.  From Ito’s lemma thef the log asset price is  

tt 2 [1.2] 
dZdtSd σσµ +−= )1(ln 2

In the rest of the paper the notation developed by Garman and Klass is adopted: 

σ= asset volatility, to be estimated; 

Ct = closing price on day t; 

Ot = opening price on day t; 

Ht = high price on day t; 

Lt = low price on day t; 

ct = lnCt – lnOt, the normalized close price; 

ot = lnOt - lnCt-1, the normalized open price; 

ut = lnHt – lnOt, the normalized high price; 

dt = lnLt – lnOt, the normalized low price; 

n = number of daily periods. 

Using this notation the classical variance estimator σ2 is given by 
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The Parkinson [1980] estimator uses instead the high and low values to estimate 

the variance: 

∑
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Garman and Klass provide an estimator with superior efficiency, having 

minimum variance on the assumption that the process follows a geometric 

Brownian motion with zero drift:  
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Here the term efficiency is used to refer to the ratio  

)ˆ( 2
GKVar σ [1.6] 

)ˆ( 2
cVar σ

The no-drift assumption is a good approximation when the quantity µ√n/σ is 

small, which is usually the case for daily series.  However there are often periods 

during which an asset process trends strongly, the drift being large relative to the 
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volatility.  The Parkinson and Garman-Klass estimators will tend to overestimate 

volatility during these periods. 

Rogers and Satchell [1991] derive an estimator that allows for nonzero drift: 

∑
=

n1
−+−=

i
iiiiiiRS cddcuu

n 1

2 )]()([σ̂ [1.7] 

Yang and Zhang [2002] devise an estimator that combines the classical and 

Rogers-Satchell estimator, showing that it has the minimum variance and is both 

unbiased and independent of process drift and opening gaps.  Their estimator is 

given by 

2222 ˆ)1(ˆˆˆ RScoYZ kk σσσσ −++= [1.8] 

Where the constant k takes the form  
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Yang and Zhang show that the efficiency of the estimator is 1 + 1/k, and that k 

is at a minimum of 0.0783 for m = 2.  Under these conditions, the efficiency has 

a peak value of 14, meaning that using only two days’ data for this estimator gives 

the same accuracy as the classical estimator using three week’s data.  However, 
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where the process is dominated by opening jumps the efficiency reduces to 

almost one, which means there is no improvement over the classical estimator. 

Alizadeh, Brandt and Diebold [2002] show that the log range ln(ut – dt) is to a 

very good approximation normally distributed with mean (0.43 + lnσt), and 

variance 0.292.  They test their estimator under a wide variety of simulated market 

conditions, finding it to be robust to microstructure noise, in contrast to other 

popular volatility estimators including realized volatility.  This estimator has 

approximately constant variance and hence its efficiency with vary according to 

the characteristics of the asset process.   

Anderson [2000] introduces the concept of integrated volatility, being the sums of 

squares of high frequency intra-day returns, and demonstrates the superior 

accuracy of the volatility metric compared to the classical standard deviation 

measure.  Anderson’s estimator has become the accepted benchmark for 

estimating volatility using market data and we adopt it as such in this research. 

Data  

The test dataset used to evaluate the volatility estimators comprised observations 

of the S&P 500 Index from 4-Jan-1988 to 31-Dec-2003, some 4,037 trading days.  

The realized variance is calculated as the sum of squares of five minute intra-day 

returns.  Summary statistics for daily returns reveal the long term upward drift in 
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the S&P 500 index process, which equates to an annual drift rate of 8.1% 

(Exhibit 1). 

Summary statistics for realized volatility show that the average volatility of the 

process is just over 12%, but with some considerable variation and high levels of 

kurtosis (Exhibit 2). 

Asset Process Simulation 

If the log asset price follows a geometric Brownian motion we can use a discrete 

approximation to generate a simulated asst process using 

NtXNSS ttttt K,2,1/)5.0(lnln ,
2

1 =+−=− − σσµ [1.9] 

Where Xt is N(0,1/N), normally distributed with zero mean and variance 1/N, N 

being the number of price movements per day. 

We consider a number of simulation scenarios.  If the baseline scenario we test 

the relative efficiency of the various estimators assuming constant volatility and 

zero drift.  Here the focus of interest is on the relative performance of the various 

estimators as the sample size and frequency of observation vary. Monte Carlo 

simulation is used to generate 100 instances of the process which are sampled at 

frequencies of 1-minute, 5-minute and 15-minute in a trading day lasting 6.5 

hours.  The various estimators are calculated using sample sizes of 5, 25 and 50 

days. 
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In the second scenario volatility again remains constant at 14%, but we allow for 

a time-varying annual drift of 5%, 10% and 15%.  The question of interest here is 

how volatility estimators are affected by levels of non-zero drift which typically 

characterize asset processes. 

It is well known empirical finding that asset volatility changes over time and this 

is evidenced in the case of the S&P 500 index, where the process volatility itself 

has an annual volatility of 4%.  The process itself is approximately follows a log-

normal distribution as illustrated in Exhibit 3 for the log-volatility process. 

In the third scenario we simulate this behavior by allowing volatility to fluctuate 

each day, while remaining constant during the day.  Volatility for a given day is 

generated by sampling from a LogNormal distribution with the same 

characteristics as that found empirically for the S&P 500 index.  This scenario is 

likely to favor alternatives to the classical volatility estimator, which assumes that 

volatility remains constant, and is therefore unlikely to be able to reflect short-

term changes in the level of the volatility process. 

The final simulation scenario is designed to assess the impact of opening price 

gaps on the performance of the volatility estimators.  Under this scenario the 

assumption of continuous trading breaks down and one-period estimators such 

as the Parkinson, Garman-Klass, Rogers and Satchell and Alizadeh-Brandt-

Diebold estimators may perform poorly.  The Yang and Zhang estimator is a 
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multi-period estimator and should therefore able to capture the effect of the 

opening jump correctly.  The classical close-close estimator is likely to give 

inflated estimates of volatility because of the discontinuities in the process and its 

inability to capture anything but close – close movements.  In this scenario we 

assume as before that we can observe the process at 1-minute intervals during a 

6.5 hour trading day (390 steps).  However we also now assume that prices 

continue to move outside out trading hours and we examine the outcome if we 

simulate 50, 100, 150 and 200 price movements when the market is closed. 

The final test is an empirical test of the performance of the various estimators on 

a data sample comprising observations of the S&P 500 index at 5-minute 

intervals from 4-Jan-1988 to 31-Dec-2004. 

The measures used to assess the performance of the various estimators in the 

simulation scenarios are as follows: 

)ˆ(
1

i
i

iN
Bias σσ −= ∑1 N

= [1.10] 
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The efficiency test compares the relative uncertainty of the various estimators, 

using the variance of the classical close-close standard deviation as a benchmark.  

If the ratio is larger than 1, the variance of the current estimator, M, is smaller 

than that of the classical estimator.  The larger the ratio, the more efficient the 

estimator is. 

Simulation Testing 

Exhibit 4(a) in the Appendix shows the results of the first simulation, a base case 

in which volatility is constant at 14% and the process contains no drift term.  In 

terms of bias, the integrated volatility measure outperforms all of the other 

estimators, as expected.  The classical estimator consistently tends to overestimate 

the true process volatility, although the bias is small and moderates as the sample 

size increases.  With the exception of the Brand-Diebold estimator, all of the 

other volatility metrics show a marked tendency to underestimate the true process 

volatility, a bias that increases as the sampling frequency diminishes.  Increasing 

the sample size from five to fifty days diminishes the bias, but the downward bias 

induced by low sampling frequency dominates.  The findings show how sensitive 

these estimators are to the assumption that the process is continuously observed.  

Although the bias is in most cases acceptably small for high frequency sampling, 

this disguises a further difficulty:  at high frequencies, bid-offer bounce will 

significantly impact observed returns and hence volatility estimates.  

Consequently in practice, in order to mitigate bid-offer effects, volatility estimates 
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should be based on observations made at 5-minute intervals or more.   At these 

levels the bias in the various non-classical estimators, with the exception of the 

Alizadeh-Brandt-Diebold estimator, becomes unacceptably large.  The 

performance behavior of the Alizadeh-Brandt-Diebold estimator is unusual.  At 

higher sampling frequencies it exhibits a tendency to over-estimate volatility, to a 

greater degree than the classical estimator.  The bias diminishes as the sampling 

frequency is reduced to 5-minutes, to less than half that of the classical estimator.  

As the observation frequency falls still further to 15 minute intervals, the bias 

again reappears, this time in the form of a tendency to underestimate the true 

process volatility. 

Exhibit 4(b) shows a clear improvement in the accuracy of the estimators, in 

terms of Mean Absolute Deviation, as the sample size increases. This is true of all 

of the estimators, including the realized volatility metric, but is most pronounced 

for the classical estimator.   The Alizadeh-Brandt-Diebold estimator dominates 

the classical estimator in terms of MAD at all sampling frequencies and sample 

sizes. 

As Exhibit 4(c) indicates, the non-standard estimators all show significant 

efficiency gains relative to the classical estimator, in line with our expectations 

from theory.  Apart from the realized volatility metric, the most efficient 

estimators are the Garman-Klass and Yang-Zhang estimators.  The Alizadeh-
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Brandt-Diebold estimator is the least efficient of the non-standard estimators, but 

its efficiency is not much lower than the Parkinson estimator and its variance is 

five times smaller than that of the classical estimator.  Relative efficiency is not 

much improved by higher sampling frequency or larger sample size for any of the 

volatility estimators. 

In Exhibit 4(d) we examine the correlations between the volatility estimators for 

the simulated data series comprising 25 days observations at 5-minute intervals.  

The most striking finding is the low level of correlation between the realized 

volatility estimator and its alternatives.  This is in sharp contrast with the very 

high correlations between the estimators when applied to market data, examined 

later in Exhibit 12(b) in the Appendix, which suggests that there are fundamental 

behaviors of the market process which are not captured by the simulated process.   

Further points of interest are the perfect correlation between the Parkinson and 

Alizadeh-Brandt-Diebold estimators, which stems from their use of the same log-

range metric; the low level of correlation between the classical estimator and the 

Garman-Klass, Rogers-Satchell and Yang-Zhang estimators; and the high 

correlations between the Yang-Zhang, Garman-Klass and Rogers-Satchell 

estimators, which again is due to similarities in the metrics employed by these 

estimators.  Exhibit 5 represents the inter-relationships between the various 

estimators, in the form a cluster diagram. 
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In Exhibit 6(a) we examine the impact of non-zero drift on the performance of 

the volatility estimators.  In terms of bias, none of the estimators appears much 

affected by drift levels below the 15% threshold.  At higher levels of drift all of 

the estimators, with the exception of the realized volatility estimator, show a 

tendency to under-estimate volatility, and this is typically more marked than at 

lower drift levels.  Overall, however, process drift does not appear to be a major 

influence on estimator bias.   In Exhibit 6(b) the Alizadeh-Brandt-Diebold 

estimator shows very stable MAD performance at all drift levels, while the MAD 

for both the classical and realized volatility estimators actually improves as drift 

levels rise.  The reverse relationship is generally seen for other estimators.  In 

terms of estimator efficiency, Exhibit 6(c) indicates that the performance of the 

Parkinson and Alizadeh-Brandt-Diebold estimators is unaffected by drift levels.  

By contrast, the efficiency of the Garman-Klass, Rogers-Satchell and Yang-

Zhang estimators at first increases with the drift level and then declines as it 

reaches higher drift level of 15% per annum.   

As far as correlations between the estimators is concerned, Exhibit 6(d) indicates 

that the principal effect of process drift is to induce noticeably higher levels of 

correlation between the realized volatility measure and the other estimators.  This 

finding suggests the hypothesis that process drift is one of the factors which 

induces high levels of correlation between the volatility estimators seen in the 

market process (Exhibit 12(b) in the Appendix). 
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Exhibit 7(a) sets out the results from the scenario in which the asset process 

variance is a random variable, assumed to follow a LogNormal distribution of the 

form: 

 [1.13] 

Where ξ is the volatility of volatility. 

This distribution has mean  

2e [1.14] 

2
2 ξσ +

We allow ξ to take values 0%, 85%, and 116% giving expected values of process 

volatility of 10%, 12% and 14%.  Samples from the distribution are drawn for 

each day and, once sampled, volatility remains at that level throughout the day.  

Volatility estimators are calculated for 5-minute sample frequencies and sample 

length of 25 days.  The results indicate how estimator bias increases with kurtosis. 

For the Parkinson, Rogers-Satchell and Yang-Zhang estimators the downward 

bias becomes very marked at the highest levels of kurtosis (corresponding to a 

process volatility of 14%).  By contrast, the bias of the classical estimator is quite 

moderate, while that of the realized volatility and Alizadeh-Brandt-Diebold 

metrics is minor.   As might be expected, Exhibit 7(b) shows demonstrates that 

the MAD of all of the estimators increases substantially with the level of kurtosis, 

in some cases by two- or three-fold.  At the highest level of kurtosis, the MAD of 



the classical estimator is at least 1.5 times greater than that of other estimators.  

The effect of kurtosis can be identified more precisely by comparing the results in 

Exhibit 7(b) with those of Exhibit 4(b), in which volatility was fixed 

deterministically at 14% (sample frequency 5 minutes, sample length 25 days), as 

shown in Exhibit 8. 

From Exhibit 9 it is apparent that kurtosis has by far the greatest effect on the 

classical estimator.  The increase in MAD is least for the Garman-Klass and 

Rogers-Satchell estimators, but all of the estimators are outperformed by the 

realized volatility and Alizadeh-Brandt-Diebold estimators, whether volatility is 

deterministic or random.  

A similar comparison shows that the impact of kurtosis on estimator bias is quite 

modest. As Exhibit 10 demonstrates, it is estimator efficiency that is affected 

most by kurtosis, which compresses the efficiency of all of the volatility 

estimators by around 50% or more (dramatically more so in the case of the 

realized volatility estimator).  Nonetheless, estimator variance remains in all cases 

less than half that of the classical estimator. 

Another effect of random volatility is to induce much higher levels of correlation 

between the volatility estimators than results from process drift alone.  As Exhibit 

9(d) in the Appendix shows, the most important correlations, those between the 

realized volatility estimator and its alternatives, approaches the levels seen in 
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empirical tests on market data (see Exhibit 12(b) in the Appendix for 

comparison). 

The final simulation scenario considers the performance of the volatility 

estimators in the presence of opening gaps. Note that in computing realized 

volatility we omit the first observation of each day as otherwise inflated volatility 

estimates would result from inclusion of the overnight ‘gap’ return.  As might be 

expected (since they are single period estimators and/or only consider daily price 

ranges during periods when the market is open) the bias of the realized volatility, 

Parkinson, Rogers-Satchell and Alizadeh-Brandt-Diebold estimators are 

unaffected in any material way by the introduction of opening gaps, as the results 

in Exhibit 11(a) confirm.  Unsurprisingly, the classical, Garman-Klass and Yang-

Zhang estimators, which incorporate close-close information, tend to produce 

increasingly inflated volatility estimates as the average size of the opening gaps 

increases.  At the same time, the efficiency of the latter estimators reduces in 

proportion to the number of time steps outside market hours, ultimately falling 

by more than half.   

The impact of opening gaps on the correlations between volatility estimators is 

two-fold.  Firstly, as can be seen in Exhibit 11(d), there is a rise in the correlations 

between the realized volatility estimator and the volatility estimators which use a 

range-based metric:  the Parkinson, Rogers-Satchell and Alizadeh-Brandt-Diebold 
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estimators.  These appear to correlate more highly with realized volatility than do 

other estimators, which are strongly affected by opening gaps. Secondly, there is a 

breakdown in the very high levels of correlation between the Yang-Zhang, 

Paarkinson and Rogers-Satchell estimators, again because of the impact of 

opening gaps on estimators which are not primarily range-based. Note that the 

Yang-Zhang and Garman-Klass estimators remain highly correlated, as might be 

deduced from this analysis. 

In an attempt to reproduce the very high levels of correlation seen between the 

volatility estimators in empirical tests (see next section) a final simulation study 

was conducted in which the various departures from geometric Brownian motion 

were combined.  Volatility was sampled from a LogNormal distribution 

producing an expected process volatility of 14%; process drift was set to be 8% 

per annum; and finally we allowed for opening gaps comprising 200 steps outside 

market hours.  The results, shown in Exhibit 11(e) in the Appendix, indicate that 

this combination of features produces still higher levels of correlation between 

the various estimators which approaches, but does not yet attain, the very high 

levels seen in empirical tests.  This suggests that the simulated process does not 

yet incorporate approximations for all of the “anomalies” which typify real asset 

processes in the way that they depart from idealized GBM behavior.  In 

particular, we conjecture that it is the long term serial autocorrelation (long-

memory) in real asset volatility processes that induces very high levels of 
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correlation between the volatility estimators.  This important feature is absent 

from the simulated test series used in this analysis 

Empirical Testing 

For an empirical test of the volatility estimators 5-minute return data for the S&P 

500 index from 4 Jan 1988 to 31 Dec 2003 were used to construct a series of 

4,037 daily observations comprising open, high, low and close prices.  The series 

was divided into 161 non-overlapping periods comprising 25 days of data and 

used to construct volatility estimates using each of the estimators.  Of course, in 

this empirical test we do not know the true process volatility, so we take as our 

standard the integrated volatility comprising the sums of squares of 5-minute 

returns over each 25 day period.  The results, summarized in Exhibit 12(a), paint 

a very different picture from that produced from simulation studies.  Here it is 

the Parkinson estimators which outperforms all of the other estimators in terms 

of bias, Mean Absolute Deviation and Mean Absolute Percentage Error.  The 

closely related Alizadeh-Brandt-Diebold measure, by contrast, appears to have 

produced inflated volatility estimates, and with larger MAD and variance than 

other estimators, save the classical estimator.  The latter performs worst amongst 

all of the estimators, with a bias and MAPE that are large enough to lead to 

economically significant arbitrage opportunities if used as the basis for pricing 

index options.  While the classical estimator produces inflated volatility estimates, 

the Garman-Klass, Rogers-Satchell and Yang-Zhang estimators all show signs of 
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negative bias, as in the simulation tests.  In general, MAD levels are 40% to 100% 

higher than in the baseline simulation analysis using the same sample length and 

frequency.  The efficiency level of all of the estimators is well below theoretical 

expectations and even the most extreme of the simulation results.  Noticeably, 

the realized volatility has the lowest relative efficiency of any of the estimators, an 

outcome not seen in any of the simulation tests. 

Another significant departure from the results seen in simulation studies is the 

very high levels of correlation between all of the volatility estimators, as shown in 

Exhibit 12(b) in the Appendix.  Once again, a cluster diagram is used to illustrate 

the interrelationships between the estimators and shows a grouping very similar 

to that seen in simulation analysis (Exhibit 13).  This suggests that the factor(s) 

inducing higher levels of correlation between the estimators affects each one 

approximately equally, since we do not see a substantial re-alignment of the inter-

estimator correlations, but rather a rise in correlations across the board. 

Taken together, the findings of significant disparities between the performance 

characteristics of the volatility estimators in simulated vs. empirical analysis  

suggest that the departures from the idealized geometric Brownian motion 

process are rather greater than envisaged in this or other parallel research and 

may involve a combination of all of the behaviors considered in this analysis 

(random volatility, opening gaps, process drift), together with other factors such 
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as market microstructure effects not considered here.  One conjecture is that long 

memory effects which empirical studies have repeatedly demonstrated to exist 

within volatility processes may result in still higher levels of correlation between 

the volatility estimators than are likely to result from process drift, opening gaps, 

and random volatility effects alone. 

Conclusion 

In this study we compare the performance characteristics of a number of 

alternatives to the classical volatility estimator under a variety of simulated market 

conditions and in an empirical test on S&P 500 index data.  Numerical tests with 

Monte Carlo simulation show that estimator performance is strongly dependent 

on the assumptions made about the underlying process, and to the chosen 

sampling frequency and sample size.  With the exception of the realized volatility 

and Alizadeh-Brandt-Diebold estimators, all of the estimators produce biased 

estimates of true process volatility unless observations are taken at high 

frequencies of 1-minute intervals.  The performance of these estimators further 

deteriorates in the presence of other departures from geometric Brownian 

motion such as process drift, stochastic volatility and opening gaps.  As bid-offer 

spreads are almost certain to introduce a further source of substantial bias at high 

frequencies, these findings call into question the usefulness of many of the 

alternate estimators despite their superior efficiency. 
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Other than the realized volatility estimator, whose performance dominates that of 

every other estimator in every scenario, the only alternative estimator with 

consistently superior performance characteristics to the classical estimator is the 

Alizadeh-Brandt-Diebold log-range estimator.  This metric shows itself to be a 

robust and accurate volatility estimator under many different types of departure 

from idealized GBM conditions, and in addition performs well with low 

frequency data and small sample sizes. 

The results from empirical research differ significantly from those seen in 

simulation studies in a number of respects.  Here it is the Parkinson estimator 

that has the best performance, while the Alizadeh-Brandt-Diebold estimator is 

amongst the worst performers against a number of criteria.  None of the 

estimators achieves anything close to the levels of efficiency expected from 

theory or seen in simulation analysis.  Finally, the levels of correlation between 

volatility estimators in far higher in the empirical test than in any of the 

simulation studies.  The only common finding between simulation and empirical 

testing is that the classical estimator performs significantly worse than any of the 

other estimators on every criterion.  Further research is required to devise asset 

process models that produce simulation results closer to those seen in this 

empirical test before a definitive assessment can be made of the performance 

characteristics of the various volatility estimators considered in this study. 
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APPENDIX  

Exhibit 1  Summary Statistics for Daily Returns. 

Daily Returns
Mean 0.0322%
Standard Error 0.0160%
Median 0.0423%
Mode 0
Standard Deviation 0.010144
Sample Variance 0.000103
Kurtosis 4.26
Skewness -0.26
Range 13.13%
Minimum -7.11%
Maximum 6.02%
Count 4037
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Exhibit 2  Summary Statistics for Realized Volatility. 

Realized Volatility
Mean 12.09%
Standard Error 0.12%
Median 10.17%
Mode 7.11%
Standard Deviation 7.77%
Sample Variance 0.60%
Kurtosis 13.63
Skewness 2.46
Range 114.88%
Minimum 2.14%
Maximum 117.02%
Count 4037
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Exhibit 3  Log-Volatility Distribution. 

 
Histogram: LWSSQ88-2004

K-S d=.02071, p<.10 ; Lilliefors p<.01
Shapiro-Wilk W=.99626, p=.00000
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Exhibit 4  Performance statistics for simulated geometric Brownian motion 

process with zero drift and constant annual volatility of 14%, with observations 

taken at 1-minute, 5-minute and 15-minute intervals and sample periods of 5, 25 

and 50 days. 

-30- 

Bias

Frequency 
(mins) Days  Realized  StDev  Parkinson

 Garman-
Klass

 Rogers-
Satchell

 Yang-
Zhang

 Brandt-
Diebold

1 5 0.12% 0.79% -0.26% -0.54% -0.71% -0.44% 0.88%
25 0.11% 0.43% -0.28% -0.38% -0.50% -0.28% 0.86%
50 0.11% 0.20% -0.38% -0.45% -0.56% -0.35% 0.75%

5 5 0.12% 0.79% -0.85% -1.30% -1.58% -1.11% 0.24%
25 0.11% 0.43% -0.89% -1.15% -1.37% -0.95% 0.20%
50 0.11% 0.20% -0.99% -1.21% -1.41% -1.00% 0.09%

15 5 0.12% 0.79% -1.67% -2.24% -2.77% -1.98% -0.65%
25 0.11% 0.43% -1.73% -2.06% -2.54% -1.74% -0.71%
50 0.11% 0.20% -1.86% -2.15% -2.63% -1.83% -0.85%

Exhibit 4(a) 

 

 

 

MAD

Frequency 
(mins) Days  Realized  StDev  Parkinson

 Garman-
Klass

 Rogers-
Satchell

 Yang-
Zhang

 Brandt-
Diebold

1 5 0.42% 3.84% 1.62% 1.39% 1.61% 1.43% 1.73%
25 0.20% 1.70% 0.74% 0.66% 0.85% 0.67% 1.03%
50 0.14% 1.19% 0.59% 0.55% 0.67% 0.51% 0.82%

5 5 0.42% 3.84% 1.79% 1.75% 2.05% 1.66% 1.69%
25 0.20% 1.70% 1.04% 1.19% 1.44% 1.03% 0.77%
50 0.14% 1.19% 1.03% 1.22% 1.43% 1.02% 0.52%

15 5 0.42% 3.84% 2.21% 2.49% 3.04% 2.29% 1.85%
25 0.20% 1.70% 1.76% 2.08% 2.58% 1.76% 0.98%
50 0.14% 1.19% 1.87% 2.16% 2.65% 1.84% 0.91%

Efficiency

Frequency 
ins) Days  Realized  StDev  Parkinson

 Garman-
Klass

 Rogers-
Satchell

 Yang-
Zhang

 Brandt-
Diebold

1 5 84.1 1.0 6.0 8.8 6.6 7.9 5.1
25 80.0 1.0 5.8 8.2 5.3 7.3 4.9
50 88.0 1.0 6.1 9.4 6.4 8.7 5.2

5 5 84.1 1.0 5.9 9.4 6.8 8.3 5.0
25 80.0 1.0 5.6 8.2 4.8 7.0 4.8
50 88.0 1.0 6.0 8.8 5.7 8.1 5.1

15 5 84.1 1.0 5.6 8.2 5.6 7.3 4.8
25 80.0 1.0 5.5 8.8 4.4 7.5 4.7
50 88.0 1.0 5.9 9.4 5.7 8.4 5.0

Exhibit 4(b) 

 

 

 

(m

Exhibit 4(c) 

 

 



Exhibit 7(d) 

Correlations are for the simulated process with sampling at 5-minute frequencies 
for a 25-day sample period. 

Correlation Realized StDev Parkinson
Garman-

Klass
Rogers-
Satchell

Yang-
Zhang

Brandt-
Diebold

Realized 1.000 0.032 0.094 0.156 0.110 0.144 0.094

StDev 1.000 0.786 0.209 -0.164 0.228 0.786

Parkinson 1.000 0.735 0.400 0.715 1.000

Garman-Klass 1.000 0.891 0.970 0.735

Rogers-Satchell 1.000 0.917 0.400

Yang-Zhang 1.000 0.715

Brandt-Diebold 1.000
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Exhibit 5 Cluster Diagram for Volatility Estimators. 

Tree Diagram for Volatility Estimators
Euclidean distances

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16

Linkage Distance
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Realized
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Exhibit 6 Performance statistics for simulated geometric Brownian motion 

process with varying drift and constant annual volatility of 14%, with 

observations taken at 5-minute intervals and sample periods of 25 days. 

Exhibit 6(a) 

Bias

Drift  Realized  StDev  Parkinson
 Garman-

Klass
 Rogers-
Satchell

 Yang-
Zhang

 Brandt-
Diebold

0% 0.11% 0.43% -0.89% -1.15% -1.37% -0.95% 0.20%

5% 0.10% 0.11% -1.12% -1.34% -1.58% -1.16% -0.05%

10% 0.08% 0.25% -1.03% -1.24% -1.44% -1.04% 0.05%

15% 0.04% -0.24% -1.30% -1.41% -1.55% -1.20% -0.24%

 

 

 

Exhibit 6(b) 

MAD

Drift  Realized  StDev  Parkinson
 Garman-

Klass
 Rogers-
Satchell

 Yang-
Zhang

 Brandt-
Diebold

0% 0.20% 1.70% 1.04% 1.19% 1.44% 1.03% 0.77%

5% 0.21% 1.81% 1.29% 1.38% 1.61% 1.22% 0.85%

10% 0.17% 1.63% 1.15% 1.27% 1.49% 1.09% 0.71%

15% 0.18% 1.54% 1.41% 1.46% 1.59% 1.26% 0.77%

 

 

 

Exhibit 6(c) 

Efficiency

Steps  Realized  StDev  Parkinson
 Garman-

Klass
 Rogers-
Satchell

 Yang-
Zhang

 Brandt-
Diebold

50 81.4 1.0 7.0 10.9 8.0 10.4 6.0

100 132.8 1.0 6.5 7.5 6.4 6.6 5.5

150 87.0 1.0 6.4 5.0 6.3 5.0 5.4

200 129.9 1.0 7.0 4.4 8.3 4.4 6.0
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Exhibit 6(d) 

Correlations are for the simulated process with sampling at 5-minute frequencies 

for a 25-day sample period, with annual drift of 15%. 

Correlation Realized StDev Parkinson
Garman-

Klass
Rogers-
Satchell

Yang-
Zhang

Brandt-
Diebold

Realized 1.000 0.228 0.304 0.328 0.222 0.332 0.304

StDev 1.000 0.812 0.373 -0.059 0.323 0.812

Parkinson 1.000 0.812 0.454 0.754 1.000

Garman-Klass 1.000 0.857 0.964 0.812

Rogers-Satchell 1.000 0.916 0.454

Yang-Zhang 1.000 0.754

Brandt-Diebold 1.000
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Exhibit 7  Performance statistics for simulated geometric Brownian motion 

process with zero drift and stochastic volatility LogNormally distributed with 

mean 10% and standard deviation of 0%, 85%, and 116%, with observations 

taken at 5-minute intervals and sample periods of 25 days.  The results in 

expected process volatility of 10%, 12% and 14% respectively. 

Exhibit 7(a) 

Bias

Volatility  Realized  StDev  Parkinson
 Garman-

Klass
 Rogers-
Satchell

 Yang-
Zhang

 Brandt-
Diebold

10.00% 0.08% -0.11% -0.86% -0.99% -1.14% -0.86% -0.10%

12.00% 0.17% -0.08% -0.97% -1.09% -1.27% -0.94% -0.05%

14.00% 0.13% 0.58% -0.96% -1.31% -1.61% -1.11% 0.13%

 

 

 

Exhibit 7(b) 
MAD

Volatility  Realized  StDev  Parkinson
 Garman-

Klass
 Rogers-
Satchell

 Yang-
Zhang

 Brandt-
Diebold

10.00% 0.13% 1.08% 0.93% 1.02% 1.17% 0.90% 0.49%

12.00% 0.73% 1.89% 1.38% 1.44% 1.61% 1.35% 1.12%

14.00% 1.28% 3.31% 2.08% 1.95% 2.22% 1.89% 1.89%

 

 

 

Exhibit 7(c) 
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Efficiency

Volatility  Realized  StDev  Parkinson
 Garman-

Klass
 Rogers-
Satchell

 Yang-
Zhang

 Brandt-
Diebold

10.00% 87.66 1.00 5.23 7.53 5.48 7.42 4.46

12.00% 4.30 1.00 2.87 3.15 2.53 2.96 2.45

14.00% 4.49 1.00 2.68 3.56 3.69 3.44 2.28

 

 



Exhibit 7(d) 

Correlations are for the simulated process with sampling at 5-minute frequencies 

for a 25-day sample period, with mean volatility of 14% and zero drift. 

Correlation Realized StDev Parkinson
Garman-

Klass
Rogers-
Satchell

Yang-
Zhang

Brandt-
Diebold

Realized 1.000 0.616 0.751 0.756 0.721 0.783 0.751

StDev 1.000 0.875 0.675 0.502 0.688 0.875

Parkinson 1.000 0.940 0.839 0.940 1.000

an-Klass 1.000 0.968 0.992 0.940

Rogers-Satchell 1.000 0.970 0.839

ang-Zhang 1.000 0.940

Brandt-Diebold 1.000

Garm

Y
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Exhibit 8  Comparison of Estimator MAD for Deterministic and Stochastic 

Volatility. 

MAD

Volatility  Realized  StDev  Parkinson
 Garman-

Klass
 Rogers-
Satchell

 Yang-
Zhang

 Brandt-
Diebold

Fixed 0.20% 1.70% 1.04% 1.19% 1.44% 1.03% 0.77%
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Variable 1.28% 3.31% 2.08% 1.95% 2.22% 1.89% 1.89%

  

 

 

 



Exhibit 9  Comparison of Estimator Bias for Deterministic and Stochastic 

Volatility. 

Bias

Volatility  Realized  StDev  Parkinson
 Garman-

Klass
 Rogers-
Satchell

 Yang-
Zhang

 Brandt-
Diebold

Fixed 0.11% 0.43% -0.89% -1.15% -1.37% -0.95% 0.20%

Variable 0.13% 0.58% -0.96% -1.31% -1.61% -1.11% 0.13%
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Exhibit 10  Comparison of Estimator Efficiency for Deterministic and Stochastic 

Volatility. 

Efficiency

Volatility  Realized  StDev  Parkinson
 Garman-

Klass
 Rogers-
Satchell

 Yang-
Zhang

 Brandt-
Diebold

Fixed 80.0 1.0 5.6 8.2 4.8 7.0 4.8
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Variable 4.5 1.0 2.7 3.6 3.7 3.4 2.3

  

 

 



Exhibit 11  Performance statistics for simulated geometric Brownian motion 

process with zero drift and volatility of 14%, with observations taken at 1-minute 

intervals within each trading day and for a variable number of steps when the 

market is closed.  The sample length is 50 days.   

Exhibit 11(a) 

Bias

Steps  Realized  StDev  Parkinson
 Garman-

Klass
 Rogers-
Satchell

 Yang-
Zhang

 Brandt-
Diebold

50 -0.08% 0.89% -0.59% 0.22% -0.76% 0.31% 0.52%

100 -0.10% 1.75% -0.48% 1.17% -0.67% 1.26% 0.65%

150 -0.10% 2.35% -0.66% 1.87% -0.80% 1.96% 0.45%

200 -0.09% 3.26% -0.58% 2.71% -0.74% 2.79% 0.53%

 

 

 

Exhibit 11(b) 

MAD

Steps  Realized  StDev  Parkinson
 Garman-

Klass
 Rogers-
Satchell

 Yang-
Zhang

 Brandt-
Diebold

50 0.15% 1.36% 0.69% 0.40% 0.83% 0.43% 0.64%

100 0.14% 1.86% 0.67% 1.16% 0.80% 1.25% 0.73%

150 0.15% 2.33% 0.74% 1.86% 0.87% 1.94% 0.63%

200 0.13% 3.19% 0.68% 2.69% 0.78% 2.77% 0.70%

 

 

 

Exhibit 11(c) 

-40- 

Efficiency

Steps  Realized  StDev  Parkinson
 Garman-

Klass
 Rogers-
Satchell

 Yang-
Zhang

 Brandt-
Diebold

50 81.44 1.00 7.00 10.88 8.05 10.43 5.96

100 132.76 1.00 6.46 7.49 6.40 6.59 5.51

150 87.02 1.00 6.36 5.02 6.25 4.96 5.42

200 129.85 1.00 7.03 4.44 8.35 4.36 5.99

 

 



Exhibit 11(d) Correlations are for the simulated process with sampling at 5-

minute frequencies for a 25-day sample period, with constant volatility of 14%, 

zero drift and 200 steps between market close and open. 

Correlation Realized StDev Parkinson
Garman-

Klass
Rogers-
Satchell

Yang-
Zhang

Brandt-
Diebold

Realized 1.000 -0.009 0.243 0.106 0.267 0.102 0.243

StDev 1.000 0.483 0.398 -0.135 0.418 0.483

kinson 1.000 0.372 0.523 0.392 1.000

Garman-Klass 1.000 0.275 0.967 0.372

Rogers-Satchell 1.000 0.342 0.523

Yang-Zhang 1.000 0.392

Brandt-Diebold 1.000

Par

 

 

 

 

 

Exhibit 11(e) Correlations are for the simulated process with sampling at 5-

minute frequencies for a 25-day sample period, with random volatility with mean 

of 14%, annual drift of 8% and 200 steps between market close and open. 

Correlation Realized StDev Parkinson
Garman-

Klass
Rogers-
Satchell

Yang-
Zhang

Brandt-
Diebold

Realized 1.000 0.580 0.840 0.845 0.803 0.849 0.840

StDev 1.000 0.700 0.689 0.394 0.693 0.700

Parkinson 1.000 0.768 0.745 0.777 1.000

Garman-Klass 1.000 0.804 0.995 0.768

Rogers-Satchell 1.000 0.813 0.745

Yang-Zhang 1.000 0.777

Brandt-Diebold 1.000
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Exhibit 1  Performance statistics for volatility estimators computed on S&P 500 

Index data at 5-minute intervals from 4-Jan-1988 to 31-12-2003. 

Exhibit 12(a) 

Realized StDev Parkinson
Garman-

Klass
Rogers-
Satchell

Yang-
Zhang

Brandt-
Diebold

Mean 13.03% 15.16% 13.05% 12.35% 12.21% 12.73% 14.13%

Variance 0.37% 0.46% 0.29% 0.26% 0.25% 0.28% 0.34%

Bias 2.12% 0.01% -0.68% -0.82% -0.30% 1.10%

MAD 2.37% 1.21% 1.27% 1.51% 1.23% 1.48%

MAPE 20.26% 9.55% 8.75% 10.49% 9.17% 13.41%

Efficiency 1.24 1.00 1.58 1.77 1.83 1.67 1.35

 

 

 

 

 

Exhibit 12(b) 

Correlation Realized StDev Parkinson
Garman-

Klass
Rogers-
Satchell

Yang-
Zhang

Brandt-
Diebold

Realized 1.000 0.954 0.971 0.968 0.953 0.967 0.971

StDev 1.000 0.975 0.944 0.911 0.942 0.975

Parkinson 1.000 0.991 0.976 0.990 1.000

Garman-Klass 1.000 0.994 0.999 0.991

-Satchell 1.000 0.996 0.976

Yang-Zhang 1.000 0.990

andt-Diebold 1.000

Rogers

Br
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Exhibit 2  Cluster Analysis for Volatility Estimators Using Market Data. 

Tree Diagram for Volatility Estimators
Euclidean distances

0.00 0.05 0.10 0.15 0.20 0.25 0.30

Linkage Distance

StDev

Brandt-Diebold

Rogers-Satchell

Yang-Zhang

Garman-Klass

Parkinson

Realized
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